
 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

In this lesson, students will explore the
concept of autonomous robots and
their role in technologies like self-driv-
ing vehicles. They will learn how bats
use echolocation to navigate and how
these principles are applied to robotics
and autonomous systems. Key topics
include spatial awareness, obstacle
avoidance, and logical thinking related
to robot navigation.

To support teachers, infographics and
presentations are provided to guide in-
struction and enhance understanding.
Students will engage in hands-on block
coding activities to program robots for
obstacle avoidance, testing and refin-
ing their code in a controlled environ-
ment. Curriculum outcomes related
to coding, robotics, and real-world
applications of autonomous systems
have been clearly identified to ensure
alignment with educational goals.

I	Understand the concept of autonomous robots and their application in
autonomous vehicles.

I	Learn how bats use echolocation with ultrasonic sound to navigate.

I	Explore the application of echolocation principles in robotics and
autonomous vehicles.

I	Understand the importance of spatial awareness and obstacle avoidance
in robotics.

I	Develop logical thinking skills related to obstacle avoidance.

I	Gain basic knowledge of block coding and its application in
programming robots.

I	Obtain hands-on coding experience to perform obstacle avoidance tasks.

I	Test and refine coded programs in a controlled environment.

I	Connect learned concepts to real-world applications in robotics and
autonomous systems.

Note: This activity uses the mBot from MakeBlock, so the term “mBot” will
be used instead of “robot”.

mBot kit(s)
• 4 AA Batteries (for the mBot)
• Tablet(s)/Phone(s)/Personal Computer(PC) with mBlock app installed

• mBlock app for Web/PC/Mac/Chrome: https://mblock.cc/pages/downloads

• mBlock app for Android (Google Play, mBlock apk)
• mBlock app for iOS (iOS App Store)

• Small Movable Barriers (eg: Mega Bloks, wooden blocks)

• Perimeter wall (4-6 pieces wooden 2” x 4”, 2ft each)

• Clue Card Decks and Challenge Solutions (available at
electrifyingthefuture.ca)

• Computer and Projector for presentation

• “Coding and Autonomous Features in Automobiles” presentation
(available at electrifyingthefuture.ca)

• Seeing with Sound & Understanding mBlock infographics

DESCRIPTION

MATERIALS

OBJECTIVES

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
1

SET-UP
• Assemble mBot and install batteries.

• Install mBlock app on devices.

Tablet/PC/Phone :

• Install mBlock app

• For Coding

 » Open mBlock App

 » Select Coding

 » Select mBot as device and click the tick on
the top-right corner.

Now Tablet/PC/Phone is ready for coding.

• Perimeter wall: Place 4 pieces of perimeter wall
blocks in a rectangular shape (or six in a hexagonal
shape) and attach the corners to prevent movement
when hit by the mBot.

• Small Movable Barriers: Adjust the height of the
barrier structure to be approximately equal to the
height of the mBot.

OVERVIEW OF LESSON TASKS

*Adjust the lesson timing based on participant
experience. If more time is needed for coding, skip
certain activities as noted.

PRESENTATION GUIDE, ACTIVITIES
& CHALLENGES
This lesson plan is designed to be completed alongside
the “Coding and Autonomous Features in Automobiles”
presentation (Powerpoint or Google Docs versions are
available for download at electrifyingthefuture.ca).

 Introduction (Tasks 1-2)

Presentation Slides #: 1-4, 6

Objectives: Introduce participants to the concept of
robots by examining how self-driving cars function as
robotic systems, with a focus on obstacle detection
technology. Investigate the similarities between how
self-driving cars and bats use echolocation, highlighting
the parallels between natural and technological systems.

Variation: For older participants, material from the
Scientific Background section can be utilized to offer
more in-depth information.

 Echolocation Activity (Tasks 3-4)

Presentation Slide #: 5

Materials: Blind folds (optional)

Objective: To help participants understand how sound
can be used for navigation and environmental awareness
when vision is not available.

Description: One participant is blindfolded (or closes
their eyes), while two others stand randomly in the
room. The two standing participants take turns clapping
their hands, and the blindfolded participant uses the
sound of the claps to determine who and where the
others are. They will then point in the direction of
the sound and identify the participants. This activity is
designed to help participants understand how sound can
be used for navigation and environmental awareness,
similar to how bats use echolocation when vision is not
possible.

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
2

Task Materials

1
Introduction and
Welcoming

Instructor PC with
slides

2
Scientific Background
(Robots and Echolocation)

3 Echolocation Activity

4
Scientific Background
(Ultrasonic Sensors in Cars)

5
mBlock Software
Introduction

Clue Card Decks

6 Challenge1-Discussion
Clue Card Decks, Task
sheet #1

7 Challenge 1-Coding
mBot, mBlock app,
Laptop/Tablet, Task
sheet #1

8 Challenge 1-Testing
mBot, mBlock app,
Laptop/Tablet

9 Challenge 2-Discussion
Clue Card Decks, Task
sheet #2

10 Challenge 2-Coding
mBot, mBlock app,
Laptop/Tablet, Task
sheet #2

Task Materials

11 Challenge 2-Testing
mBot, mBlock app,
Laptop/Tablet

12 Challenge 3-Discussion
Clue Card Decks, Task
sheet #3

13 Challenge 3-Coding
mBot, mBlock app,
Laptop/Tablet, Task
sheet #3

14 Challenge 3-Testing
mBot, mBlock app,
PC/Laptop/Tablet

WATCH HERE!

electrifyingthefuture.ca

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

Variation: For older participants, incorporating
blindfolds and a few obstacles enhances the activity.
Set up a simple obstacle course using small objects like
chairs, cones, or boxes in a large, open space. Pair up
participants, with one blindfolded and the other acting
as the “echolocator.” The blindfolded participant can
only move forward, turn right, or stop based on the
echolocator’s click sounds. The echolocator will make
clicking sounds to guide the blindfolded participant
around obstacles.

The blindfolded participant begins by standing still and
saying, “sensor starts on count 1, 2…5,” signaling the
echolocator and starting a countdown from 1 to 5. If
the blindfolded participant does not hear a click sound
within the count, they will move forward. If an obstacle
is in their path, the echolocator clicks before the count
finishes, causing the blindfolded participant to stop and
turn right. After turning right, the blindfolded partici-
pant starts counting again from 1 to 5. If another click is
heard, indicating a new obstacle, the participant stops
and turns right again. This process of counting, listen-
ing for clicks, and turning right continues until no click
is heard within the count, signaling it is safe to move
forward.

 Introduction to mBlock Software (Task 5)

Presentation Slide #: 8-18

Materials: Clue card decks - Hand out to groups during
this part of the presentation.

Objective: To help participants understand how sound
can be used for navigation and environmental awareness
when vision is not available.

Description: The main objective of the robot coding
activity is to develop a step-by-step obstacle avoidance
program. Begin by introducing the block coding style, a
visual and user-friendly approach to programming the
mBot. Walk participants through the mBlock software
interface, ensuring they understand how to navigate
and utilize the available tools. Highlight the block
categories that will be essential for the coding tasks:
Show, Actions, Sensing, Events, Controls, and Operators.
Provide explanations and examples for each category
to demonstrate the types of blocks they contain. These
categories have been selected because they will be
crucial in the upcoming coding activities.

By the end of this session, participants should have a
clear understanding of the mBlock software interface
and the relevant block categories, setting a strong
foundation for the coding tasks ahead.

Variation: For participants who are already familiar with
block coding, the instructor can modify the activity by
offering a brief overview of the relevant block categories
instead of an in-depth explanation. Each group can then
be assigned a category to explore independently. After a
few minutes, the groups will share their findings or prior
knowledge with the class. This approach encourages

peer learning and allows more advanced participants to
lead the discussion.

 Coding Challenge 1: Obstacle Detection (Tasks 6-8)

Presentation Slide #: 22-23

Materials: mBot, mBlock software, Building block, Task
sheet 1 (optional)

Objective: Teach participants how to program the mBot
to detect obstacles using its ultrasonic sensor and change
the mBot’s LED color according to the distance from the
obstacle.

Description: Start the activity with a discussion on the
logic of the program, explaining why the LED color
changes according to the distance detected by the
ultrasonic sensor. Provide a step-by-step guide through
the coding process, ensuring participants understand
the function of each block. Participants will have time
to code their program independently based on the
discussed logic. Once coding is complete, they can test
their program by placing small objects (e.g., building
blocks) at varying distances in front of the mBot to
observe its response.

Note: To test the code, turn on the mBot, connect it to
the mBlock app via Bluetooth, and click the green flag
to start the program. Participants can evaluate their
obstacle avoidance code by placing a block both within
20 cm and beyond 20 cm of the mBot.

Important Considerations: Instructors should be aware
that the mBot’s ultrasonic sensors have a limited range
and can only detect flat surfaces. It is advisable to
position the block directly in front of the mBot rather
than at an angle. After testing, ensure all groups turn off
their mBots to conserve battery life.

Extensions:

• Understanding Ultrasonic Sensor Range: If time
permits, the instructor can explain how ultrasonic
sensors detect distances. After testing the 20 cm
range, participants can adjust the distance to 10
cm. They should move the block to find where the
mBot’s LED changes from green to red. When it turns
red, moving the block to the right should eventually
turn the LED green again, marking the end of the
sensor’s range.

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
3

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
4

• Real-World Applications: Following this exploration,
the instructor can discuss how this limitation is
addressed in cars. For instance, vehicles often use
multiple ultrasonic sensors (typically four at the rear)
to extend detection range and improve obstacle
detection during reversing.

Variations:

For Beginners: Provide a task sheet with the solution
included. Participants will follow the sheet to build their
code, learning through example.

For Advanced Participants: If participants are
experienced with block coding and confident in their
coding skills, focus on discussing the underlying logic.
Give them time to code the program independently.
Afterward, present the solution for them to compare
with their own work.

 Coding Challenge 2: Single Obstacle Avoidance
(Task 9-11)

Presentation Slide #: 24-25

Materials: mBot, mBlock software, Building block, Task
sheet 2 (Optional)

Objective: Teach participants how to program the mBot
to stop upon detecting an obstacle, turn right, and then
continue moving forward when no obstacle is present.

Description: Participants will enhance the obstacle
detection logic from Challenge 1 by incorporating
movement commands into the mBot’s programming.
When an obstacle is detected, the mBot will stop, then
turn right at 30% speed. If no obstacle is detected, it will
continue moving forward.

Start with a discussion on how this logic controls
the mBot’s movement based on obstacle detection.
Participants will then code the program, either
independently, with guidance, or using a task sheet,
depending on their skill level.

For testing, have participants bring their mBots to a
designated testing area with perimeter walls to contain
movement. The mBot should be tested in this area rather
than on a table.

Important Considerations:

• To code the turn right command, use the same block
code as for moving forward, but select the direction

from the first drop-down menu in that block code.

• The mBot will not move if the speed is set to 20%. It
is recommended to use a speed of 30% or higher.

• Before testing, make sure the distance in the
condition block is set to 20 cm, not less.

Extensions: Participants can adjust the distance to
observe the effects. The instructor should explain that
the distance is set to 20 cm because the mBot needs
enough space to stop completely before hitting an
obstacle. Just like real-world vehicles need to maintain a
safe distance from the car in front to avoid sudden stops,
the mBot requires a sufficient distance to stop safely.

Variations:

For Beginners: Provide additional task sheets or detailed
instructions to support them in completing the coding.
Offer closer guidance through each step to ensure they
grasp the basics of movement control in block coding.

For Advanced Participants: Encourage them to
experiment with different movement patterns, such as
making the mBot turn in various directions or adjusting
speeds for different scenarios. Allow them to work more
independently, with the instructor offering guidance as
needed.

 Coding Challenge 3: Multiple Obstacle Avoidance
(Task 12-14)

Presentation Slide #: 8-18

Materials: Clue Card Decks

Objective: Improve the mBot’s ability to navigate by
programming it to detect and avoid multiple obstacles
in a row. The mBot should continuously make right turns
until it finds a clear path.

Description: Participants can enhance the mBot’s obstacle
avoidance abilities by programming it to navigate
around multiple obstacles. If the mBot detects an
obstacle (Obstacle 1) and turns right to avoid it but then
encounters another obstacle (Obstacle 2) in the new
direction, it should make another right turn. The mBot
will keep turning right until it finds a clear path to move
forward.

Begin by discussing this improved logic, explaining how
participants will program the mBot to handle multiple
obstacles without getting stuck. The coding process

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
5

will involve adding a loop to the existing logic from
Challenge 2, which checks for obstacles after each turn
and makes additional turns as needed until a clear path
is found.

Participants will use control block codes, operation
block codes (such as loops and conditionals), and the
ultrasonic sensor block code to implement this enhanced
obstacle avoidance. The approach will be consistent
with previous challenges, allowing participants to code
independently, follow guided instructions, or use a task
sheet, depending on their skill level.

For testing, participants should bring their mBots to
the designated testing area, which will have perimeter
walls. The instructor should set up the area with multiple
obstacles to simulate a complex environment.

Important Considerations:

• To code the turn right command, use the same block
code as for moving forward, but select the direction
from the first drop-down menu in that block code.

• The mBot will not move if the speed is set to 20%. It
is recommended to use a speed of 30% or higher.

• Before testing, make sure the distance in the
condition block is set to 20 cm, not less.

Extensions:

Turn Right, Then Left: Instead of always turning right,
participants can program the mBot to first turn right,
then check for obstacles again. If an obstacle is detected
after the right turn, the mBot should make a 180-degree
turn to the left (relative to the initial direction) and then
proceed.

Turn at Specific Angles: Challenge participants to
program the mBot to turn at specific angles rather than
just turning right. They can achieve this by programming
one wheel to move while the other remains stationary,
using a wait block to control the turning duration, and
then adding a move forward block once the turn is
complete. This enhancement will enable participants to
control the mBot’s movement with greater precision and
explore more advanced coding techniques.

SCIENCE BACKGROUND

Echolocation in Bats

Bats use a fascinating method called echolocation to
navigate and hunt in the dark. By emitting ultrasonic
sound waves that are beyond the range of human
hearing, bats can create a mental map of their
surroundings. When these sound waves bounce off
objects and return as echoes, bats analyze the timing and
characteristics of the echoes to determine the location,
size, and shape of objects around them. This ability
allows bats to fly swiftly and accurately, even in complete
darkness.

Ultrasonic Sound and Human Hearing

Ultrasonic sound refers to sound waves with frequencies
higher than the upper limit of human hearing, which
is around 20,000 Hz. Humans cannot hear ultrasonic
sounds, but many animals, including bats, dolphins,
and certain insects, use these high-frequency sounds for
communication and navigation. In technology, ultrasonic
sound is utilized in various applications, such as medical
imaging and obstacle detection, due to its ability to
provide detailed information without being intrusive.

Nature’s Influence on AI Systems

Scientists and engineers often look to nature for
inspiration when developing advanced technologies. The
concept of echolocation, for example, has been adapted
to create artificial systems that mimic this natural ability.
By studying how bats use sound to navigate, researchers
have developed ultrasonic sensors that enable machines
to perceive their environment similarly. This bio-inspired
approach helps improve the efficiency and functionality
of artificial intelligence (AI) systems.

Autonomous Cars

Autonomous cars, or self-driving cars, are a prime
example of how AI and sensor technology come
together to create intelligent systems. These vehicles
are equipped with a variety of sensors that allow them
to operate without human intervention. Key sensors
include cameras, radar, lidar, and ultrasonic sensors,
each providing different types of data to help the car
understand its surroundings.

Ultrasonic Sensors in Autonomous Cars

Ultrasonic sensors play a crucial role in the safe operation
of autonomous cars. These sensors emit ultrasonic waves
that reflect off nearby objects, and the car’s system
analyzes the returning echoes to detect obstacles and
measure distances. This technology is particularly useful
for short-range detection, such as during parking and
low-speed maneuvers. By incorporating ultrasonic
sensors, autonomous cars can accurately navigate
complex environments, avoid collisions, and ensure
passenger safety.

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
6

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

ONTARIO CURRICULAR OUTCOMES
(Intermediate) The following outcomes are projected to
directly relate to the following lesson. Detail can be added
to the lesson to match a specific unit plan or extend the
learning of the experience. Please note that this list may
not include all relevant outcomes.

Grades 1-8

Coding and Emerging Technologies

A2.1 write and execute code in investigations and when
 modeling concepts

G1 with a focus on creating clear and precise
 instructions for simple algorithms

G2 with a focus on decomposing problems into
 smaller steps

G3 with a focus on testing, debugging, and refining
 programs

G4 with a focus on producing different types of
 output for a variety of purposes

G5 with a focus on using different methods to store
 and process data for a variety of purposes

G6 with a focus on obtaining input in different ways
 for a variety of purposes

G7 with a focus on planning and designing programs

G8 with a focus on automating large systems in action

A2.2 identify and describe impacts of coding and of
 emerging technologies

G1-3 on everyday life

G4-8 on everyday life, including skilled trades

Grade 9

STEM Investigation Skills (SNC1W)

A1.3 apply an engineering design process and
 associated skills to design, build, and test devices,
 models, structures, and/or systems

A1.4 apply coding skills to investigate and to model
 scientific concepts and relationship

Applications, Careers, and Connections (SNC1W)

A2.1 design an experiment or a prototype to explore a
 problem relevant to a STEM-related occupation,
 such as a skilled trade, using findings from research

Problem Solving and Project Management (TIJ10)

B1.1 apply the steps of a design process or other
 problem-solving process to plan and develop
 products and services (e.g., define the problem
 or challenge, taking into account
 relevant contextual or background information;
 gather information [about criteria, materials,

 constraints]; generate possible solutions, using
 techniques such as brainstorming; choose the
 best solution; develop and produce a model
 or prototype; test the model or prototype;
 incorporate improvements or redesign and retest;
 report on results)

B1.5 demonstrate the ability to work cooperatively in
 a group environment to solve problems (e.g., share
 tools, tasks, materials, and resources)

Grade 10 (ICD20)

Applications, Careers, and Connections (ICD20)

A3.1 investigate how digital technology and
 programming skills can be used within a variety of
 disciplines in real-world applications

A3.2 investigate ways in which various industries,
 including those that involve skilled trades,
 are changing as a result of digital technology and
 programming innovations

Understanding Hardware and Software (ICD20)

B1.1 describe the functions and features of various
 core components of hardware associated with
 digital technologies they encounter in their
 everyday life

B1.2 describe the functions and features of various
 connected devices associated with digital
 technologies they encounter in their everyday life

Innovations in Digital Technology (ICD20)

B4.1 investigate current innovations, including
 automation and artificial intelligence systems, and
 assess the impacts of these technologies on
 everyday life

B4.3 investigate emerging innovations related to
 hardware and software and their possible benefits
 and limitations with reference to everyday life in
 the future

Programming Concepts and Algorithms (ICS20), ICD20

(B1.5) use appropriate terminology to describe
 programming concepts and algorithms

C1.1 use appropriate terminology to describe
 programming concepts and algorithms

C1.2 describe simple algorithms that are encountered in
 everyday situations

C1.3 identify various types of data and explain how
 they are used within programs

C1.4 determine the appropriate expressions and in
 structions to use in a programming statement,
 taking into account the order of operations

C1.5 identify and explain situations in which conditional
 and repeating structures are required

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
7

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

Writing Programs (ICD20)

C2.2 write programs that use and generate data
 involving various sources and formats

C2.4 write programs that include sequential, selection,
 and repeating events

C2.5 write programs that include the use of Boolean
 operators, comparison operators, text operators,
 and arithmetic operators

C2.6 interpret program errors and implement strategies
 to resolve them

Modularity and Modification (ICD20)

C3.1 analyze existing code to understand the
 components and outcomes of the code

C3.2 modify an existing program, or components of a
 program, to enable it to complete a different task

Programming Concepts and Algorithms (ICS20)

B1.5 use appropriate terminology to describe
 programming concepts and algorithms

B1.6 describe the function of Boolean operators (e.g.,
 AND, OR, NOT), comparison operators (i.e., equal
 to, not equal to, greater than, less than, greater
 than or equal to, less than or equal to), and
 arithmetic operators (e.g., addition, subtraction,
 multiplication, division, exponentiation,
 parentheses), and use them correctly in
 programming

Writing Programs (ICS20)

B2.1 use a visual problem-solving model (e.g., IPO
 [Input, Process, Output] chart; HIPO [Hierarchy plus
 Input, Process, Output] chart and diagram; flow
 chart; storyboard) to plan the content of
 a program

B2.4 write a program that includes a decision structure
 for two or more choices (e.g., guessing game, rock-
 paper-scissors game, multiple-choice quiz, trivia
 game)

B2.5 write programs that use looping structures
 effectively (e.g., simple animation, simple board
 games, coin toss)

Computer Programming (TEJ20)

B5.3 use a decision structure and a repetition structure
 in a program (e.g., determine if a user is old
 enough to drive, run a high-low guessing game,
 count from a starting value to an end value)

B5.4 use a design process (see pp. 18–19) to plan, write,
 and test a computer program to control a simple
 robot or peripheral device (e.g., servo motor, LED
 display)

Technology and Society (TEG20)

C2.2 describe how computers are used in various
 occupations (e.g., engineering calculations,
 architectural drawings, customer tracking and

 business data collection, navigation of airplanes
 and ships), and what work in these occupations
 would be like without computers

Grade 11

Data Types and Expressions (ICS3U)

A1.4 demonstrate the ability to use Boolean operators
 (e.g., AND, OR, NOT), comparison operators (i.e.,
 equal to, not equal to, greater than, less than,
 greater than or equal to, less than or equal to),
 arithmetic operators (e.g., addition, subtraction,
 multiplication, division, exponentiation,
 parentheses), and order of operations correctly in
 computer programs

Control Structures and Simple Algorithms (ICS3U)

A2.2 use sequence, selection, and repetition control
 structures to create programming solutions

A2.3 write algorithms with nested structures (e.g., to
 count elements in an array, calculate a total, find
 highest or lowest value, or perform a linear search)

Problem-solving Strategies (ICS3U)

B1.1 use various problem-solving strategies (e.g., step
 wise refinement, divide and conquer, working
 backwards, examples, extreme cases, tables and
 charts, trial and error) when solving different types
 of problems

B1.2 emonstrate the ability to solve problems
 independently and as part of a team

Designing Software Solutions (ICS3U)

B2.1 design programs from a program template or
 skeleton (e.g., teacher-supplied skeleton, Help
 facility code snippet)

B2.2 use appropriate vocabulary and mode of
 expression (i.e., written, oral, diagrammatic) to
 describe alternative program designs, and to
 explain the structure of a program

B2.4 represent the structure and components of a
 program using industry-standard programming
 tools (e.g., structure chart, flow chart, UML
 [Unified Modeling Language], data flow diagram,
 pseudocode)

Exploring Computer Science (ICS3U)

D2.1 demonstrate an understanding of emerging areas
 of research in computer science (e.g., cryptography,
 parallel processing, distributed computing, data
 mining, artificial intelligence, robotics, computer
 vision, image processing, human– computer
 interaction, security, geographic information
 systems [GIS])

D2.2 demonstrate an understanding of an area of
 collaborative research between computer science
 and another field (e.g., bioinformatics, geology,
 economics, linguistics, health informatics,
 climatology, sociology, art)

LESSON PLA N 5 :LESSON PLA N 5 : COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES COdi Ng ANd AutONOmOuS FEAturES i N AutOmObi LES

– from the Goodman School of Mines at Laurentian University – PAGE
8

 electrifyingthefuture.ca
GOODMAN School of Mines

École des mines
Get all the details: electrifyingthefuture.ca

Grade 12

Data Structures

A1.2 use Boolean operators (e.g., AND, OR, NOT),
 comparison operators (i.e., equal to, not equal
 to, greater than, less than, greater than or equal
 to, less than or equal to), arithmetic operators
 (e.g., addition, subtraction, multiplication, division,
 exponentiation, parentheses), and order of
 operations correctly in programming

